INTEGRATION OF NONLINEAR EQUATIONS OF
EQUILIBRIUM KINETICS OF PHYSICAL SORPTION
WITH REGARD TO HEAT RELEASE

L. K. Tsabek UDC 541.183.5

The accuracy is analyzed of the equations for a model for anisothermic sorption kinetics in
porous granules.

The equilibrium kinetics of physical sorption can be described by means of the quasilinear equations
of material balance, the thermal equation of sorption (1), the equation of thermal balance for liquefied gas
inside a porous granule (3), the initial conditions (4) and the boundary conditions (5)-(7):

8l Is T 71, *
LY B S T T A 0
ot dt or | or ar or
oT 0 . aT -I . E
=Y " (T —=T), 0<r<l, (2)
E > { o | U
* w
T g 1. aT dg
9t o T.T ik 3)
ot pat ar [ or } i { ) ot
Crmp =, T{t:o = T!z_—_o =0, 4)
L“v"*l = Cys TII:L - ,}‘:\rzl = 0, (5)
Co = (/C /O'(zc_) - /1 gl ’ (T_'%z-a—T—)‘ :O,
k\ dl' / ’7—-1 r lr-;l 0[’ r=1
7 *
(Tem 2-) =0 ©)
N 0r lr:l
<r\‘ __d_LA> s (/ v QI_)"‘ —_ ,rv aT \1 =0. (7)
Or = \ al’ / jr, 0 (}I‘ }11':0

The boundary conditions (5) relate to the internal-diffusion heat and mass exchange, and the conditions (6)
to the mixed external and internal diffusion heat and mass exchange.

In the general case the system of equations (1)-(7) can be integrated only numerically with the aid of
a digital computer. The disadvantage of such a system lies in that firstly one has to determine experi-
mentally a great number of parameters, (W, Xi, X, V., Yi> Q) if numerical integration is to be used. It
seems, therefore, reasonable that one should try to replace the exact system (1)-(3) by an approximate
one though with a smaller number of numerical parameters:
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where T is the characteristic temperature of an elementary volume of a porous granule.
The boundary-value problem for the quasilinear system (8)-(9), (4)-(7) with an arbitrary function f
can be integrated only numerically, However, for a stepwise sorption isotherm,
={0' 0=c, (0, 0 g
T o<eg, {1, g=k, (10)
which is a limit of the convex Langmuir isotherm,the exact solution of Eqs. (8)-(9) can be obtained in an

analytic form by reducing our problem to a Stefan problem [2]. In the latter case using the conditions (4)
and (5) for ¢y =1, ¢’ =0, v = 0 we can write
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The solution of Eqs. (11)~(12) is given by
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By using the integral form of the first equation in (8) a transcendental equation is obtained for a:
oy kerf (/) k) = exp(— a¥/k),

whose solution is @ = 0.671 (for k = 1), a = 0.705 (for k > 1). The solution of Eqs. (13)-(14) is found in
the form
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where G(r, t, &, 7) is the Green's function.
By transforming Eq. (16) one obtains
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Fig. 1. Mean temperature of a
porous granule v. time.
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For numerical values of Hnp(t) one can make use of the tables in {3, 4].
A i Having expanded the function erf(x) into a series one can write the expres-
sions for the functions Hy(t) for R > 1 as follows:
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function inside a porous
granule.
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The analytic solutions (15)~ (17') are of particular interest when one estimates the error of the approxima-
ting model system of equations for anisothermic kinetics of sorption. For concentrations and temperature
averaged over a granule one obtains from (8)-(9)
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Using Eqgs. (21) the model system of equations of anisothermic kinetics can be written as
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where w (E) is a function of filling the granule with the sorbed substance; p(%) is the function of heat-ex~
change inside a porous granule.

For a stepwise isotherm we find with the aid of the solutions (15)-(17)
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The limiting value of the function p(T) with t = = is
po = d205/(v + 3). @7)

Using Eq. (25) the values of the function T (t) were calculated, to provide an example, with v = 0, kQ = 0.23,
d? = 54 they are indicated in Fig. 1 by small circles. If one regards p( ) as the error of the second
equation in (22) the values are calculated of the quantity p* = p(T)/p, with the aid of the solutmns (25) and
(26); they are shown in Fig. 2 by small circles. To determine the asymptotic of p* (T) for T— 0 (or for

t — 0 respectively) one writes down
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The expression (30) for A = 1.1 on the ascending portion of T)(0 = T =< max T) is shown in Fig. 2 by small
crosses. For the descending portion of T( Y (maxT = T =< 0) the quantity p*( } varies between 1.1 and 1,
that is, it can be assumed that p* = 1 in that portion of the curve Tit).

By comparing the exact function p* ( ) with the approximation in (30) one can see_ that the expression
(30) can beusedwith sufficient accuracy in appr0x1mate evaluations of the quantity o* (T) In practice,

however, the model equation (22) for p* ﬁ) =, p* (T)dT m = const is more convenient:
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For a stepwise isotherm the solution (24) for v = 0 is
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and corresponds to the solution of the first equation of (31). By using (32) the solution of the second equa-
tion (31) is given by
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For mt £ 1 the numerical values of (33) can be found from the expression

. R N B Cep VR
= —== — {mt
! Vm < /\Qj @2n —H! (mty ™~

1=

if the function erf(x) is expanded into a series, and for mt > 1 from the expression

v£Q \“’w (@n —1!

T = - .
omV't n—’__-g 2r (mt)”

1044



For m = d’p} = 12.5 the solution (33) is indicated in Fig. 1 by small crosses. The solutions (24), (25),

(32) are obtained for v = 0 when the granules are represented by disks, In the majority of cases, however,
the granules are of spherical or nearly spherical shape (v € 2). Therefore to be able to compare them the
solution of the system (31) for v = 2, m =12, kQ = 0.23, q = (pc/1 + pc) (the Langmuir function), p = p,
exp [—QT( + T)"!], Q, = 4, is indicated in Fig. 1 by triangles.

The filling-up function w(c?) for the system (31} was obtained by numerical integration of the quasi-
linear equation (8) on an electronic computer. The Langmuir function for py =10 {p, > 1) is nearly step-
like. To compare the exact and approximate functions T () (Fig. 1) one notes that the anisothermal kine~-
tics of sorption for porous granules of any form (0 < v = 2) can be described by the approximation model
system of equations (31).

NOTATION

is the coneentration of absorbed substance;

is the sorbite concentration inside a porous substance;

is the relative thermodiffusion coefficient;

is the relative temperature conduction coefficient of gas {fluid) inside a porous
granule;

is the relative heat~exchange coefficient between gas (fluid) and solid phase;

is the relative temperature conduction coefficient of solid phase of a porous granule;
is the relative coefficient of sorption thermal effect;

i the relative gas (fluid) temperature inside a porous granule;

X 0.8

b4

B O 2

is the relative solid-state temperature of a porous granule;
Tprop = Tyl + T);

Tprop =Tyl +Th

Ty K are the initial temperature;

7 is the symmetry parameter.
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